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Tropical forests occupy small coral atolls to the vast Amazon basin. They occur across bioregions with different geological and 
climatic history. Differences in area and bioregional history shape species immigration, extinction and diversification. How 
this effects local diversity is unclear. The Indonesian archipelago hosts thousands of tree species whose coexistence should 
depend upon these factors. Using a novel dataset of 215 Indonesian forest plots, across fifteen islands ranging in area from 120 
to 785  000 km2, we apply Gaussian mixed effects models to examine the simultaneous effects of environment, earthquake 
proximity, island area and bioregion upon tree diversity for trees ≥ 10 cm diameter at breast height. We find that tree diversity 
declines with precipitation seasonality and increases with island area. Accounting for the effects of environment and island area 
we show that the westernmost bioregion Sunda has greater local diversity than Wallacea, which in turn has greater local diver-
sity than easternmost Sahul. However, when the model includes geological activity (here proximity to major earthquakes), bio-
region differences are reduced. Overall, results indicate that multi-scale, current and historic effects dictate tree diversity. These 
multi-scale drivers should not be ignored when studying biodiversity gradients and their impacts upon ecosystem function.

Keywords: biodiversity, biogeographic regions, diversity gradients, echo pattern, forest plots, island biogeography

Introduction

The determinants of local species diversity are scale depen-
dent (Willis and Whittaker 2002). Thus, local conditions 
interplay with large-scale speciation and extinction that 
controls the number of species that can disperse and persist 
in a community (Ricklefs and Schluter 1993, Zobel 1997, 
Spasojevic et al. 2018, Brodie et al. 2022, Trethowan et al. 
2023a). In Indonesia and neighbouring countries, we find 
high plant species richness unmatched in other archipelagoes 
(Joyce et al. 2020). There are many factors that may influence 
the country’s local diversity (van Steenis 1950, Whitmore 
1984). For example, island area and biogeographic history 
may influence diversification dynamics and thus the num-
ber of tree species that locally co-exist (Germain et al. 2016, 
Blonder  et  al. 2017, Craven  et  al. 2019, Kooyman  et  al. 
2019, Herrera-Alsina et al. 2021, McCullough et al. 2022). 
Climate and local soil conditions, in turn, also influence local 
tree diversity (Slik et al. 2009, Laumonier and Nasi 2018). So 
far, however, our understanding of the multi-scale drivers of 
local plant diversity in tropical archipelagos has been limited 
(Brambach et al. 2017, Trethowan et al. 2020).

Tropical tree diversity at small spatial scales (e.g. < 10 
ha) may be determined by local environmental conditions 
(Ricklefs 1987). For instance, tree diversity declines with ele-
vation because many species do not tolerate lower tempera-
tures (Slik et al. 2009, Rehm and Feeley 2015, Brambach et al. 
2017, Trethowan  et  al. 2023b). Likewise, seasonally dry 

forests have lower diversity because fewer species can cope 
with extended periods of drought (Davidar  et  al. 2005, 
Baltzer  et  al. 2008). Infertile soils, similarly, may remove 
species with high nutrient requirements (Slik  et  al. 2009, 
Cámara-Leret  et  al. 2017, Draper  et  al. 2018). Indonesia 
is part of the largest tropical archipelago in the world and 
encompasses a wide range of environmental gradients: from 
mangroves to alpine grasslands and from constantly wet to 
seasonally dry (Kooyman et al. 2019, Trethowan et al. 2022). 
Therefore, Indonesia provides a great opportunity to study 
the relationship between environmental variation and local 
tree species diversity (Fig. 1a).

Additionally, the impacts of geological activity upon 
Indonesian diversity require attention. Volcanic eruptions 
and earthquakes may cause major species turnover events that 
could have an archipelago-wide impact upon current diversity 
(Lavigne et al. 2013, Whelley et al. 2015, Sadili et al. 2022).

Island area is often cited as a key driver of the number 
of species that can coexist locally (MacArthur and Wilson 
1963, Karger et al. 2014, Ibanez et al. 2018, Schrader et al. 
2019a, b). Larger islands support a larger species pool 
for local communities, which therefore have more poten-
tial species (Ricklefs 1987). This ‘echo pattern’ coined by 
Rosenzweig and Ziv (1999) also accounts for the fact that on 
larger islands species that go locally extinct may, over time, 
re-establish because they survived in neighbouring popu-
lations. Larger islands also have higher immigration rates 
(Brown and Kodric-Brown 1977) and are more likely to 
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Figure 1. (a) Forests across Indonesia’s three bioregions. Top left wet lowland Central Kalimantan. Top middle wet lowland Halmahera. Top 
right wet lowland Waigeo. Bottom left Mount Salak, Java. Bottom middle seasonally dry forest West Sumbawa. Bottom right Arfak moun-
tains, Indonesian New Guinea. (b) Map of Indonesian rarefied forest plot tree diversity and their global position (inset). (c) Rarefied tree 
diversity per island. Islands with single plots not shown. Boxplots represent island mean and SD diversity. (d) +/− 1 SE (horizontal lines) 
for effects (points) of environmental variables, earthquake proximity and island area on local tree diversity in Indonesia. Both models either 
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witness in situ speciation, increasing the pool of species avail-
able at local scales (Ricklefs 2004, Borges and Hortal 2009). 
Unlike tropical continental forests, island area effects could 
be prominent in tropical archipelagoes like Indonesia where 
there are numerous islands with considerable variation in size 
(Roos et al. 2004, Schrader et al. 2019b, Sin et al. 2022).

Geological history has left an imprint upon current 
diversity patterns across the world’s biogeographic regions 
or ‘bioregions’ which we use here for brevity (Ricklefs and 
He 2016, Hagen  et  al. 2021, Herrera-Alsina  et  al. 2021). 
Indonesia straddles three island-dominated bioregions 
that differ in their histories of uplift, persistence above sea 
level and climate (Morley 2018a, Kooyman  et  al. 2019, 
Ali and Heaney 2021). Mesozoic emergence of the back-
bone of Sunda, the westernmost bioregion, preceded Java 
formed during the Pliocene (Hall 2009). Wet tropical for-
est became widespread across Sunda by the Miocene (Morley 
2018b, Wilf et al. 2022). Sunda’s land area fluctuated dur-
ing the Quaternary when island connections increased dur-
ing glacials and decreased during interglacials (Voris 2000, 
Cannon et al. 2009, Husson et al. 2020). The easternmost 
region of Sahul began to emerge in the Oligocene but for-
mation of most of New Guinea’s land area and central 
mountain range occurred in the late Miocene and Pliocene 
(Ufford and Cloos 2005, Toussaint  et  al. 2014). During 
Pleistocene glacial maxima, lower sea levels resulted in land 
connections between New Guinea and Australia, although 
Sahul was largely characterized by dry desert (Hope 1994, 
Byrne et  al. 2008, Lohman et  al. 2011, Toon et  al. 2017). 
Sulawesi, the largest island in the central Wallacean region, 
amalgamated from a number of small islands in the Pliocene 
and Pleistocene, this was likely when Halmahera formed its 
current configuration (Hall  et  al. 1988, Nugraha and Hall 
2018). Other Wallacean islands are even younger; Timor, 
Yamdena and Seram’s uplift occurring in the late Pliocene 
(Hall 2009). Previous palynological and phylogenetic studies 
have mainly concerned the presence of lineages (Crayn et al. 
2015, Morley 2018b, Yap et al. 2018, Hamilton et al. 2019, 
Kooyman  et  al. 2019). Here, we propose hypotheses that 
consider the impact of geological and climatic histories on 
diversity. The rapid recent formation of Wallacea and Sahul’s 
environmental gradients could have promoted diversification 
and resulted in greater local diversity (Toussaint et al. 2014, 
Rowe et al. 2019, Kennedy et al. 2022, McCullough et al. 
2022, Roycroft et al. 2022, Struebig et al. 2022). More likely, 
the longer residence time of terrestrial areas in Sunda may 
have resulted in the build-up of greater regional diversity, 
increasing the possible number of species able to coexist 
locally (de Bruyn et al. 2014, O’Connell et al. 2018). Added 
to that, widespread drought during glacial maxima except for 

equatorial Sunda likely caused the extinction of many tropi-
cal species in Wallacea and Sahul (Morley 1981, Cannon 
and Manos 2003, Cannon  et  al. 2009, Byrne  et  al. 2011, 
Hamilton et al. 2019, Wurster et al. 2019). Whilst the legacy 
of paleoclimate and bioregion has recently been shown to 
influence vertebrate distributions (Skeels et al. 2023), we do 
not have a clear idea of effects upon local diversity.

Here we test predictions that local tree diversity 1) declines 
with elevation, precipitation seasonality, soil infertility and 
geological activity, 2) increases with island area and 3) is 
greater in the older geological and climatically stable setting 
of Sunda compared to Wallacea and Sahul. We therefore test 
the fine-scale effects of prediction (1) and large-scale, his-
toric, species-pool effects of predictions (2) and (3): allowing 
examination of these predictions, in cohort, for the first time 
across a megadiverse region.

Material and methods

Species/morphospecies abundance lists were compiled 
for trees ≥ 10 cm diameter, from 215 georeferenced plots 
(Fig. 1b), ranging in size from 0.2 to 10.5 ha (plot meta-
data and reference list in the Supporting information) across 
Weh (1 plot), Sumatra (8), Bangka (1), Java (10), Indonesian 
Borneo (42), Sumbawa (14), Flores (4), Sulawesi (22), Buton 
(1), Wawonii (6), Halmahera (2), Seram (5), Yamdena (64), 
Waigeo (4) and Indonesian New Guinea (11) (Brearley et al. 
2019). Accepted species names followed the world checklist 
of vascular plants (Govaerts et al. 2021, Walker 2021). Our 
diversity metric was rarefied Hill diversity akin to species 
richness (Chao et al. 2014). The rarefied metric was equiva-
lent to the diversity we would expect if plots had the same 
number of individuals as the plot with the fewest, in this case 
60. Rarefaction allowed us to account for differences in num-
bers of individuals per plot and therefore compare plots of 
different sizes (Hsieh et al. 2016). This rarefied diversity met-
ric is henceforth termed ‘diversity’. To determine if rarefac-
tion impacted our results we also calculated diversity indices 
equivalent to that found for 100, 200 and 300 individuals 
across all plots and repeated analyses below using these data 
as response variables (Hsieh et al. 2016).

We examined the drivers of local tree diversity in Indonesia 
with a Gaussian mixed effects model and an identity link func-
tion. Tree diversity was modelled as a function of island area 
(total island area used for Borneo and New Guinea as these 
differ from the Indonesian border) and environmental vari-
ables (elevation, precipitation seasonality and soil carbon). 
These environmental variables were chosen because they have 
been shown to influence tropical tree diversity (Baltzer et al. 

with precipitation seasonality or earthquake proximity parameters are shown, hence single effects shown for these two parameters. Inset 
shows the random effect intercepts for bioregion across our two models. Point colour shows model prediction error as measured by the 
Aikake Information Criterion (AIC). (e) Mixed effect model predictions for local tree diversity in plots along the precipitation seasonality 
gradient, on islands of varying area, across three bioregions. Point opaqueness shows overlapping points. Photographers for (a): top left 
Nanang Sujana, CIFOR; top middle JS; top right JS; bottom left Mokhamad Edliadi, CIFOR; bottom middle LAT; bottom right LAT.

Figure 1. (Continued)
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2008, Brambach et al. 2017, Draper et al. 2018) and were the 
largest independent contributors (Supporting information) 
to the three principal component axes that represented 85% 
variability in mean annual temperature, temperature range, 
elevation, mean annual precipitation, precipitation seasonal-
ity, soil nitrogen, soil carbon and soil cation exchange capac-
ity taken from SRTM, WorldClim and SoilGrids databases 
(Farr et al. 2007, Exposito-Alonso 2017, Hengl et al. 2017). 
When the three selected variables, elevation, precipitation sea-
sonality and soil carbon were included in the model, along-
side island area, all predictor variance inflation factors (VIFs) 
were below 1.7 (Supporting information), indicating a lack of 
covariation amongst predictors. Given that we also wanted to 
test how geological activity affected diversity, we also built a 
model where precipitation seasonality was replaced with earth-
quake proximity, as parameters for this model had VIFs below 
1.7 (Supporting information). We used proximity to earth-
quakes rather than volcanoes, as VIFs for the model param-
eterised with volcano proximity exceeded 1.7. All predictors 
were scaled, as z-scores, prior to analysis to allow effect score 
comparison. Proximity to earthquakes (> 7.5 Richter magni-
tude since 2150 BC) and volcanoes was calculated from the 
NGDC/WDS databases (Service 2023a, b). Volcano data 
were expanded with data from Whelley et al. (2015). We also 
included a random intercept for bioregions (Sunda, Wallacea or 
Sahul). Bioregions follow the concept first outlined by Heilprin 
and Darlington (Fig. 1b, Ali and Heaney 2021). This reflected 
the different climatic and geological histories found between 
bioregions (Supporting information). Model residuals did not 
show spatial dependence (Moran’s I test both p > 0.5, Hartig 
2021). Finally, prediction error, using the Akaike Information 
Criterion, was compared between models parameterised either 
by precipitation seasonality and earthquake proximity.

Results

Mean diversity per island was lowest in the seasonally dry for-
ests of Sumbawa (diversity = 18.24 and SE = 0.44) and high-
est in the wet forests of Kalimantan (diversity = 42.85 and 
SE = 6.00) (Fig. 1c). The model parameterised by precipita-
tion seasonality found a negative effect of precipitation sea-
sonality and soil carbon and a positive effect of island area on 
local tree diversity (precipitation seasonality effect = −4.17 
and SE = 0.74, soil carbon effect = −1.19 and SE = 0.64, 
island area effect = 5.56 and SE = 0.92, Fig. 1d). There was 
no effect of elevation (effect = −0.21 and SE = 0.43). The 
model parameterised by earthquake proximity showed a small 
negative effect of soil carbon and a positive effect of island 
area upon local tree diversity (soil carbon effect = −0.45 and 
SE = 0.66, island area effect = 8.21 and SE = 0.8, Fig. 1d). 
Elevation had a small positive effect on local tree diversity, 
whereas earthquake proximity had a small negative effect 
(elevation effect = 0.55 and SE = 0.49, earthquake proximity 
effect = −0.79 and SE = 0.61).

Random effect intercepts for the precipitation seasonal-
ity model suggested that bioregion was strongly associated 

with tree diversity. The highest effects were in Sunda (inter-
cept = 31.52) followed by Wallacea (28.78) and then Sahul 
(25.59, Fig. 1d inset). This suggests that in Sahul diversity 
is lower than would be predicted by environmental variables 
and island area alone (Fig. 1e). Likewise, for a given value of 
island area and environmental variable, Wallacea has lower 
diversity than Sunda (but higher than Sahul). The bioregion 
random effect explained approx. 19% of variation in tree 
diversity. However, when earthquake proximity was included 
in the model, differences amongst bioregions were reduced 
(7% variation in diversity explained, Fig. 1d inset).

The model parameterised by precipitation seasonality that 
also had larger differences between bioregions according to 
random effect intercepts was more precise than the model that 
showed smaller differences between bioregions and was param-
eterised by earthquake proximity (precipitation seasonality 
model AIC 29 less than earthquake proximity model, Fig. 1d).

Results repeated with diversity metrics equivalent to 100, 
200 and 300 did not show large differences from that calcu-
lated from 60 individuals (Supporting information).

Discussion

Here, we have analysed 215 forest plots across fifteen major 
islands of the Indonesian archipelago and shown that local 
tree diversity appears to be influenced by fine-scale local envi-
ronment and proximity to earthquakes, and by large-scale 
drivers of island area and bioregion.

The physiological limits imposed by drought should be 
detrimental to the number of tropical trees able to co-exist 
locally (Baltzer et  al. 2008, Baltzer and Davies 2012). Our 
results showing declining diversity with precipitation sea-
sonality indicate that drought effects are relevant across large 
scales.

We did not find a clear relationship between eleva-
tion and diversity, perhaps caused by our plots not span-
ning sufficiently high elevations to detect diversity tail-off. 
Alternatively, it may be due to differing mountain topography, 
where dependent upon how/if mountains taper, large-scale 
diversity-elevation relationships can differ from monotonic 
decline in richness to an increase (Elsen and Tingley 2015). 
For instance, the central New Guinea highlands have a ‘dia-
mond’ shaped topography where area is greatest at mid-eleva-
tions (Elsen and Tingley 2015). Similarly, mountain species 
pools may not necessarily decline linearly with elevation 
(Bachman  et  al. 2004, Whitman  et  al. 2021). Our results 
suggest that mountain species pools, rather than elevation 
per se, could be a major driver of local diversity (Rosenzweig 
1995). This could also be reflected across different habitats. 
For instance, in the Amazon low soil nutrient habitats are 
locally rich if that habitat is widely distributed and vice versa 
high nutrient habitat with a small species pool can show low 
diversity (ter Steege et al. 2023).

We have shown how important island area and linked spe-
cies pool size variation (Zobel 1997) are for local tropical tree 
diversity. These patterns are therefore key to understanding 
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drivers of diversity of the tropical ecosystems where most 
global diversity exists. Larger islands have more species and 
can therefore support more species at local scales (Rosenzweig 
and Ziv 1999, Roos  et  al. 2004). To examine this further 
we require more baseline floristic data from Indonesia and 
neighbouring countries. First, we need to accelerate the pro-
duction of expert-led species checklists and taxonomic revi-
sions across the region (Cámara-Leret et al. 2020, Joyce et al. 
2020, Rustiami et al. 2020). Despite taxonomic information 
being critical to identify tree individuals from forest plots, 
many big tropical genera still remain taxonomically neglected 
(Frodin 2004). Second, better interdisciplinary collabora-
tion among ecologists and taxonomists is needed. This will 
be important for ecologists who want to have high-grade 
vouchers (Baker et al. 2017), and for systematists who seek to 
understand what drives trait variation across the archipelago. 
The growth of dual expert-verified data would allow examina-
tion of island species–area relationships and their dependence 
upon environmental variation between and within islands.

Here we have assumed that larger islands have larger spe-
cies pools. However, equally species-rich pools may differ 
in the diversity of traits that they support (Spasojevic et al. 
2018). Traits determine species ability to persist in an envi-
ronment so the trait pool should better reflect the number of 
species that can occur at small scales (Spasojevic et al. 2018, 
Schrader et al. 2021). Likewise, the overall dispersal capacity 
of pools should shape how many species can disperse into and 
occur at sites (Xie et al. 2023). Exploration of these potential 
patterns would require the collation and analysis of trait data 
linked to dispersal and adaptation to environment, such as 
height, leaf and fruit size (Wright  et  al. 2017, Olson et  al. 
2018, Brodie et al. 2022, Trethowan et al. 2022, 2023a).

Our results suggest an influence of biogeographic history 
upon local tropical tree diversity. We find a decrease with 
longitude from Sunda to Sahul rather than clear differences 
between the ancient geological region of Sunda and younger 
Wallacea and Sahul. This could reflect increasing distance 
from the wet tropical source pool of mainland Southeast Asia, 
as opposed to Australia where Neogene aridification drove 
widespread extinction of rainforest taxa (Byrne  et  al. 2011, 
Kooyman et al. 2019). Heightened diversity with closer prox-
imity to the western source pool suggests that dispersal dis-
tances have been crucial for the formation of modern diversity 
in Indonesia (MacArthur and Wilson 1963). Greater chance 
of tropical lineage dispersal, from the western source pool, also 
promotes their opportunities for diversification (Crayn et al. 
2015, Morley 2018b, Atkins  et  al. 2019, Kooyman  et  al. 
2019). In the western bioregions, this presumably increased 
the proportion of species adapted to tropical conditions. 
Here, these species that are pre-adapted to modern conditions 
are less likely to be outcompeted, and potentially a greater 
number of species can coexist (Harrison and Cornell 2008, 
Swenson  et  al. 2023). However, our model incorporating 
geological activity showed reduced differences in local diver-
sity explained by bioregion. Regional geology causing non-
climatic differences between bioregions, e.g. via earthquake 
frequency, is therefore likely important for local diversity.

We have shown, for the first time, how local tree diver-
sity varies across Indonesia. With this new Indonesian plot-
based data, future global studies of local tree diversity will 
have an opportunity to better cover the entirety of the tropics 
(Parmentier et al. 2007, Sullivan et al. 2017, Cazzolla Gatti et al. 
2022, ter Steege et al. 2023). Local and indigenous groups in 
Indonesia have interacted with plants for millennia and still 
use thousands of species (Sheil and Salim 2012, Sheil  et  al. 
2012, Cámara-Leret and Dennehy 2019), so further studies of 
humankind’s ecological legacies on the archipelago’s forests are 
warranted (Hamilton et al. 2021). However, more forest plot-
based data are still needed. Sampling of the large, forested areas 
in southeast Sulawesi, Flores, Sumba and Indonesian New 
Guinea should remain a priority, including coverage of high 
elevations and extreme ultramafic and karstic soils (Galey et al. 
2017, Geekiyanage et al. 2019, Brambach et al. 2020).

Diversity is key for the functioning of ecosystems 
(Jucker et al. 2014, van der Plas et al. 2018). We have high-
lighted here how for a megadiverse tree flora the parameters 
of diversity vary from the fine-scale and modern to the large-
scale and historic. Therefore, studies that forecast diversity, 
including those that use the results to predict alteration of 
ecosystem function, should integrate relevant multi-scale 
parameters across space and time.
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